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(+)-Xestospongin AY) is one of the four bis-oxaquinolizidine
alkaloids first isolated from the Australian spongestospongia
exigua by Nakagawa et dl.in 1984. Subsequently in 1989,
Kitagawa et af reported the isolation of nine bis-oxaquinolizidine
alkaloids (Araguspongines-AJ) from a marine spong¥esto-
spongia spfound in the Okinawa region. Interestingly, it was
found that Araguspongine D is a 3:7 mixture af)¢ and (-)-
Xestospongin A. In all previous publicatiofis, the absolute
configuration of ()-Xestospongin A is depicted as §2S-
9aR,2S59S94dR). Throughout this paper we shall refer to
Kitagawa'’s proposed structure of J-Xestospongin A a4.
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The intriguing structure of |)-Xestospongin A and its

vasodilatory properties have encouraged a number of studies

directed toward its synthesisTo date only one total synthesis
of (+)-Xestospongin A and its enantiomer has been repdrited.
Herein we disclose the synthesislénd other related alkaloids
based on a biosynthetic hypothesis along with the surprising
results which lead to the correction of their absolute configura-
tions. Biosyntheticallyl and other related alkaloids [including
Araguspongine B 13)?1516 and Xestospongin C1@)] can be
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derived from bis-hydroxypyridinium dime2. The occurrence

of macrocyclic and polymeric 3-alkylpyridinium compounds
among marine spongesupports this proposal. In fact the
hypothesis suggesting bis-3-alkyldihydropyridine dimers as bio-
synthetic precursors for marine alkaloids has been previously
proposed by Baldwif. The proposed dimeric biosynthetic
intermediate2 could be prepared from monom@mvhich is the
cornerstone and the initial target of our synthesis.

Thus Weiler alkylation of ethyl acetoacetate with 1-bromo-4-
chlorobutang&® gave ethyl 8-chloro-3-oxooctanoat8, (78%).
Noyori hydrogenation of3 with [Ru(ll)-SBINAP]° provided
hydroxy ested (96% yield, ee 96% as determined B NMR
analysis of its Mosher estdy. Reduction of4 by lithium
borohydride afforded didb (84%) which was converted into its
acetonide derivative6 (94%) by pyridinium tosylate/2,2-
dimethoxypropane/acetone. Reaction6ofvith sodium iodide
in refluxing acetone gave iodide (98%). Treatment o7 with
lithiated 3-picolinet? generated from 3-picoline and LDA,
provided pyridine8 (72%). Diol 9 was obtained (94%) by
removal of acetonide with dilute hydrochloric acid in ethanol.
Selective tosylation 09 afforded monotosylat&0 (88%). Slow
addition of a solution 010in butan-2-one to a refluxing solution
of sodium iodide in the same solvent gave a mixture of products,
containing dimer2. Reduction of this mixture with lithium
borohydride gave the tetrahydropyridine dinfekr (34%) after
chromatographic separation. Thé NMR of 11revealed a small
amount of itsA-4,5 double bond isomer (ca. 5%) was present.
Reaction of11 with diethyl azodicarboxylate (DEAD) gave
dehydro-bis-oxaquinolizidiné2 (53%), presumably via an imi-
nium ion intermediate. X-ray diffraction studies revealed the
trans-ring junctions in crystalling2.1* Hydrogenation of.2 with
Raney nickel in methanol surprisingly delivered Araguspongine
B (13)?>'>1¢as the major product (77%) and a small amount of
Xestospongin CI4)! (7%). Hydrogenation o2 with rhodium
on alumina in methanol followed by refluxing the reaction mixture
with a small amount of alumiftdgave Xestospongin Al( 23%),
Xestospongin C14, 17%), and Araguspongine B, 9.5%) after
HPLC separation (Scheme 1).

The identities of the synthetit3, 1, and14 were established
by comparison with the publishé#i and**C NMR dat&*>1¢and
confirmed by doping experiments with the authentic samples.
Surprisingly 13, which was described by Kitagawand Koba-
yashi® as (~)-Araguspongine B, possessed a specific rotation
value of [1]% +10.7. Interestingly, the observed specific rotation
value of our syntheticl is [a]?% —9.5 {lit. value® of (+)-
Xestospongin A ¢]Rp +8.9 and that of synthetid4 is [a]p?®
+1.6 {lit. value® of (—)-Xestospongin Cd]pR" —1.2, i.e., the
specific rotations of botlh and14 areoppositeto their expected
values. These results differ significantly from those of Hdye
and Kitagawa:” We are certain about the stereochemistries of
13, 1, and 14 because their precursof and 10 were also
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Scheme 1 Chart 1. Revised Structures ofH)-Xestospongin A,
(—)-Xestospongin C, and~)-Araguspongine B
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% % imply that the absolute stereochemistries of other Araguspongine
alkaloids (Araguspongines F, G, H, and%)may need to be
reexamined and, finally, it is likely that the intermediais an
as yet undiscovered sponge alkaloid.
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In conclusion we have demonstrated the validity of our information onl2 and the schematic summary of the alternative synthesis
proposed biosynthetic theory. In addition our results unambigu- of 9 and 10 from (S-aspartic acid (15 pages, print/PDF). An X-ray
ously establish the correct absolute configurations f- ( crystallographic file, in CIF format, is available via the Web only. See
Xestospongin A as R9R 9852 R IR 949, of (—)-Xestospongin any current masthead page for ordering information and Web access
C as (R9S9a52R,9R,9d9), and of (-)-Araguspongine B as nstructions.
(2R,959a52’R,9S949) (Chart 1). Furthermore, our results also  JA980765V



